eta reduction -->
eta conversion
computing dictionary

<theory> In lambda-calculus, the eta conversion rule states

\ x . f x <--> f

provided x does not occur as a free variable in f and f is a function. Left to right is eta reduction, right to left is eta abstraction (or eta expansion).

This conversion is only valid if bottom and \ x . bottom are equivalent in all contexts. They are certainly equivalent when applied to some argument - they both fail to terminate. If we are allowed to force the evaluation of an expression in any other way, e.g. using seq in Miranda or returning a function as the overall result of a program, then bottom and \ x . bottom will not be equivalent.

See also: observational equivalence, reduction.

(03 Feb 2009)

ET++, -et, eta, eta abstraction, etaac < Prev | Next > eta expansion, etafedrine hydrochloride, etafenone

Bookmark with: icon icon icon icon iconword visualiser Go and visit our forums Community Forums